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Correlation 

Self-test answers 

 

• Enter the advert data and use ggplot2 to produce a scatterplot (number of 
packets bought on the y-axis, and adverts watched on the x-axis) of the 
data. 

 
You can get a basic scatterplot by executing the following commands: 
 

scatter<-ggplot(advertData, aes(adverts, packets)) 

scatter + geom_point(size = 3) + labs(x = "Adverts", y = "Packets") 

 
Your scatterplot should come out like this: 

 
This graph looks horrible because ggplot2 has not scaled the axes from 0. If yours looks like 
this too, then, as an additional task, edit it so that the axes both start at 0. While you’re at it, 
label the axes nicely and make the points larger. Mine ended up like this: 
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Ah, that’s better. This is the code that I used: 

scatter<-ggplot(advertData, aes(adverts, packets)) 

scatter + geom_point(size = 3) + labs(x = "Adverts", y = "Packets") + 
scale_y_continuous(limits=c(0, 15), breaks=0:15) + scale_x_continuous(limits=c(0, 9), 
breaks=0:9) 

 

• Load the Exam Anxiety.dat file into a dataframe called examData. 

Assuming you have set your working directory to be the location of the file, you can load the 
data by executing this command: 

examData = read.delim("Exam Anxiety.dat",  header = TRUE) 

Alternatively, if you want to select the file using a dialog box you could execute: 

examData = read.delim(file.choose(), header = TRUE) 

 

• Compute the confidence intervals for the relationships between the 
time spent revising (Revise) and both exam performance (Exam) 
and exam anxiety (Anxiety). 

cor.test(examData$Revise, examData$Exam) 

cor.test(examData$Anxiety, examData$Revise) 

The outputs will be: 
 

> cor.test(examData$Revise, examData$Exam) 
 
 Pearson's product-moment correlation 
 
data:  examData$Revise and examData$Exam  
t = 4.3434, df = 101, p-value = 3.343e-05 
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alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 0.2200938 0.5481602  
sample estimates: 
      cor  
0.3967207  
 
> cor.test(examData$Anxiety, examData$Revise) 
 
 Pearson's product-moment correlation 
 
data:  examData$Anxiety and examData$Revise  
t = -10.1111, df = 101, p-value < 2.2e-16 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 -0.7938168 -0.5977733  
sample estimates: 
       cor  
-0.7092493 

 

 

• Did creativity cause success in the World’s Biggest Liar competition? 

No it didn’t. Well, it might have done, but we can’t tell this from a correlation coefficient. This 
is because although we found a significant relationship between creativity and position, we 
cannot infer causality from a correlation coefficient. 

 

• Conduct a Pearson correlation analysis of the advert data from the 
beginning of the chapter. 

Execute these commands: 
 

adverts<-c(5,4,4,6,8) 

packets<-c(8,9,10,13,15) 

cor.test(adverts, packets) 

The output will be: 
 

 Pearson's product-moment correlation 
 
data:  adverts and packets  
t = 3.0732, df = 3, p-value = 0.05443 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 -0.0479747  0.9914236  
sample estimates: 
     cor  
0.871165 
 
This value is the same as that calculated in the book. 

 

• Conduct bootstrap analysis of the Pearson and Spearman 
correlations for the examData2 dataframe. 

 
Here are the code and output for the Pearson correlation between exam performance and 
exam anxiety: 

bootR<-function(examData2,i) cor(examData2$Exam[i], examData2$Anxiety[i], use = 
"complete.obs") 

boot_pearson<-boot(examData2, bootR, 2000) 

boot_pearson 

boot.ci(boot_pearson) 
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ORDINARY NONPARAMETRIC BOOTSTRAP 
 
Call: 
boot(data = examData2, statistic = bootR, R = 2000) 
 
Bootstrap Statistics : 
      original      bias    std. error 
t1* -0.4409934 0.002317646  0.06352735 
 
> boot.ci(boot_pearson) 
 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 2000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = boot_pearson) 
 
Intervals :  
Level      Normal              Basic          
95%   (-0.5678, -0.3188 )   (-0.5752, -0.3288 )   
 
Level     Percentile            BCa           
95%   (-0.5532, -0.3068 )   (-0.5582, -0.3120 )   
Calculations and Intervals on Original Scale 

 
Here are the code and output for the Pearson correlation between exam revision and exam 

anxiety: 

bootR<-function(examData2,i) cor(examData2$Revise[i], examData2$Anxiety[i], use = 
"complete.obs") 

boot_pearson<-boot(examData2, bootR, 2000) 

boot_pearson 

boot.ci(boot_pearson) 
 
ORDINARY NONPARAMETRIC BOOTSTRAP 
 
Call: 
boot(data = examData2, statistic = bootR, R = 2000) 
 
Bootstrap Statistics : 
      original      bias    std. error 
t1* -0.7092493 0.005252507   0.1126909 
 
> boot.ci(boot_pearson) 
 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 2000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = boot_pearson) 
 
Intervals :  
Level      Normal              Basic          
95%   (-0.9354, -0.4936 )   (-0.9773, -0.5467 )   
 
Level     Percentile            BCa           
95%   (-0.8718, -0.4412 )   (-0.8519, -0.3415 )   
Calculations and Intervals on Original Scale 

 
Here are the code and output for the Pearson correlation between exam performance and 

exam revision: 

bootR<-function(examData2,i) cor(examData2$Revise[i], examData2$Exam[i], use = 
"complete.obs") 

boot_pearson<-boot(examData2, bootR, 2000) 

boot_pearson 

boot.ci(boot_pearson) 
ORDINARY NONPARAMETRIC BOOTSTRAP 
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Call: 
boot(data = examData2, statistic = bootR, R = 2000) 
 
 
Bootstrap Statistics : 
     original       bias    std. error 
t1* 0.3967207 -0.004676362  0.06795331 
 
> boot.ci(boot_pearson) 
 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 2000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = boot_pearson) 
 
Intervals :  
Level      Normal              Basic          
95%   ( 0.2682,  0.5346 )   ( 0.2749,  0.5404 )   
 
Level     Percentile            BCa           
95%   ( 0.2530,  0.5186 )   ( 0.2596,  0.5227 )   
Calculations and Intervals on Original Scale 
 

Here are the code and output for the Spearman correlation between exam performance and 
exam anxiety: 

bootRho<-function(examData2,i) cor(examData2$Exam[i], examData2$Anxiety[i], use = 
"complete.obs", method = "spearman") 

boot_spearman<-boot(examData2, bootRho, 2000) 

boot_spearman 

boot.ci(boot_spearman) 
 
ORDINARY NONPARAMETRIC BOOTSTRAP 
 
Call: 
boot(data = examData2, statistic = bootRho, R = 2000) 
 
Bootstrap Statistics : 
      original      bias    std. error 
t1* -0.4046141 0.002405364  0.08018193 
 
> boot.ci(boot_spearman) 
 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 2000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = boot_spearman) 
 
Intervals :  
Level      Normal              Basic          
95%   (-0.5642, -0.2499 )   (-0.5717, -0.2554 )   
 
Level     Percentile            BCa           
95%   (-0.5538, -0.2375 )   (-0.5523, -0.2340 )   
Calculations and Intervals on Original Scale 
 

 
Here are the code and output for the Spearman correlation between exam revision and 

exam anxiety: 

bootRho<-function(examData2,i) cor(examData2$Revise[i], examData2$Anxiety[i], use = 
"complete.obs", method = "spearman") 

boot_spearman <-boot(examData2, bootRho, 2000) 

boot_spearman 

boot.ci(boot_spearman) 
 
ORDINARY NONPARAMETRIC BOOTSTRAP 
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Call: 
boot(data = examData2, statistic = bootRho, R = 2000) 
 
 
Bootstrap Statistics : 
      original      bias    std. error 
t1* -0.6219694 0.003764904   0.0819895 
 
> boot.ci(boot_spearman) 
 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 2000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = boot_spearman) 
 
Intervals :  
Level      Normal              Basic          
95%   (-0.7864, -0.4650 )   (-0.7982, -0.4773 )   
 
Level     Percentile            BCa           
95%   (-0.7666, -0.4458 )   (-0.7588, -0.4319 )   
Calculations and Intervals on Original Scale 
 

Here are the code and output for the Spearman correlation between exam performance and 
exam revision: 

 

bootRho<-function(examData2,i) cor(examData2$Revise[i], examData2$Exam[i], use = 
"complete.obs", method = "spearman") 

boot_spearman <-boot(examData2, bootRho, 2000) 

boot_spearman 

boot.ci(boot_spearman) 
 
ORDINARY NONPARAMETRIC BOOTSTRAP 
 
 
Call: 
boot(data = examData2, statistic = bootRho, R = 2000) 
 
 
Bootstrap Statistics : 
     original       bias    std. error 
t1* 0.3498948 -0.003656983  0.09103305 
> boot.ci(boot_spearman) 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 2000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = boot_spearman) 
 
Intervals :  
Level      Normal              Basic          
95%   ( 0.1751,  0.5320 )   ( 0.1865,  0.5423 )   
 
Level     Percentile            BCa           
95%   ( 0.1575,  0.5133 )   ( 0.1490,  0.5097 ) 

 

 
 

 

• Carry out a Pearson correlation on time and gender. 

cor.test(catData$time, catData$gender) 

The output is shown in the chapter. 
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• Carry out a Pearson correlation on time and recode. 

cor.test(catData$time, catData$recode) 

The output is: 
 Pearson's product-moment correlation 
 
data:  catData$time and catData$recode  
t = -3.1138, df = 58, p-value = 0.002868 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 -0.576936 -0.137769  
sample estimates: 
       cor  
-0.3784542 

 

 

• Use the subset() function to compute the correlation coefficient between 
exam anxiety and exam performance in men and women. 

To create separate dataframes for males and females we can use the subset command as 
follows: 

 

maleExam<-subset(examData, Gender == "Male", select= c("Exam", "Anxiety")) 

femaleExam<-subset(examData, Gender == "Female", select= c("Exam", "Anxiety")) 

In both cases we have created new dataframes that contain only male data (maleExam) and 
female data (femaleExam). We have done this by taking the examData dataframe and 
selecting cases based on the logical operator Gender == “Male” or Gender == “Female”; note 
that Gender is a string variable, containing the words ‘Male’ and ‘Female’ (remember the 
capital letter), which is why we have specified the condition in the way we have. Finally, we 
use the select command to extract the numeric variables of interest (i.e., Exam and Anxiety). 
These dataframes can then be fed into the cor() function to get the correlation coefficients: 

cor(maleExam) 

cor(femaleExam) 

Execute these commands, and the output for males will look like this: 
 
              Exam    Anxiety 
Exam     1.0000000 -0.5056874 
Anxiety -0.5056874  1.0000000 
 
For females, the output is as follows: 
 
              Exam    Anxiety 
Exam     1.0000000 -0.3813845 
Anxiety -0.3813845  1.0000000 
 
The book chapter has some interpretation of these findings and suggestions for how to 
compare the coefficients for males and females. 

Oliver Twisted 

Please Sir, can I have some more … covariance and 
variance? 
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There are two functions very similar to cor() that can be used for computing 
variance and covariances; these are var() and cov(). These variables take the 
following general form: 

var(x, y, na.rm = FALSE, use = “string”) 

cov(x, y, use = “string”, method = c(“pearson”, “kendall”, “spearman”)) 

We use both these functions much as we do cor(). 
• x: This is a numeric variable or dataframe. 

• y: This is another numeric variable (does not need to be specified if x, above, is a 
dataframe). 

• use: This is a character string that specifies how missing values are handled. The 
strings can be: (1) “everything”, which will mean that R will output an NA instead of a 
correlation coefficient for any correlations involving variables containing missing 
values; (2) “all.obs”, which will use all observations and, therefore, returns an error 
message if there are any missing values in the data; (3) “complete.obs”, in which 
correlations are computed from only cases that are complete for all variables; or (4) 
“pairwise.complete.obs”, in which correlations between pairs of variables are 
computed for cases that are complete for those two variables. 

• method: This enables you to specify whether you want “pearson”, “spearman” or 
“kendall” covariances. If you want more than one type you can specify a list using the 
c() function; for example, c(“pearson”, “spearman”) would produce both types of 
covariances. 

• na.rm: This determines whether missing values should be removed (TRUE) or if they 
should be included (FALSE), the default. 

Let’s input the advert data from the book chapter by executing the following commands: 

adverts<-c(5,4,4,6,8) 

packets<-c(8,9,10,13,15) 

advertData<-data.frame(adverts, packets) 

If we want to compute the covariance between these two variables we execute: 

cov(adverts, packets) 

which gives us the following output: 
 
[1] 4.25 
 
This is the value calculated in equation (6.2). 

If we want to compute the variance of a variable we execute: 

var(adverts) 

which gives us the following output: 
 
[1] 2.8 
 
This value could be calculated manually from equation (6.1). 

If you want the covariances and variances to be computed at the same time, then enter the 
dataframe into cov(): 

cov(advertData) 

 
This gives the following output: 
 
       adverts packets 
adverts    2.80    4.25 
packets    4.25    8.50 
 
The value of the covariance between the two variables is 4.25, which is the same value as 
was calculated from equation (6.2). The covariance within each variable is the same as the 
variance for each variable (so the variance for the number of adverts seen is 2.8, and the 
variance for the number of packets bought is 8.5). These variances can be calculated 
manually from equation (6.1).  
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Please Sir, can I have some more … functions? 

If you want to compare two independent rs (i.e. rs measuring the same thing in 
two different samples) then probably the best way to do it is to write yourself a 
function that describes equation (6.11) in the book. The reason why writing a 
function is a good idea is that, having executed the function once, you can use 
it over and over again within your current R session. This saves you having to 
write out the equation every time you want to compare two correlations. 

If you access the DSUR Correlations.R file from the companion website you will 
see that I have written the function or you. The function looks like this: 

zdifference<-function(r1, r2, n1, n2) 

{zd<-(atanh(r1)-atanh(r2))/sqrt(1/(n1-3)+1/(n2-3)) 

 p <-1 - pnorm(abs(zd)) 

 print(paste("Z Difference: ", zd)) 

 print(paste("One-Tailed P-Value: ", p)) 

 } 

This looks pretty horrendous, but before you run off and find a pencil with which to stab 
yourself in the head we’ll try to break it down into its constituent parts: 

• zdifference: This is the name I have given to the function. If we want to use it in the 
future, we therefore would type zdifference() just like we do with built in functions. 

• function(r1, r2, n1, n2): This defines what values are input to the function. To 
calculate the difference between correlations we need to know four things: the 
correlations (which I have called r1 and r2, but I could have given then any label I 
liked), and the sample sizes on which they are based (which I have called n1 and 
n2). When we use the function we will have to input these four values. So, to 
calculate the difference for the example in the book we would simply execute 
zdifference(-0.506, -0.381, 52, 51). 

• {}: Anything between these brackets is the function itself. It contains a list of 
instructions that tell R what to do. 

• zd<-(atanh(r1)-atanh(r2))/sqrt(1/(n1-3)+1/(n2-3)): The first instruction is to create an 
object called zd, which is simply equation (6.11) from the book. We use a built-in 
function, atanh(), to get the z of each correlation coefficient. The rest is simply 
inputting the sample sizes (n1 and n2) into the equation. 

• p <-1 - pnorm(abs(zd)): This creates an object, p, which is the one-tailed probability 
of zd (which we have already computed). We obtain this using a built in function 
pnorm(), which is applied to the absolute value of zd (i.e., ignore the plus or minus 
sign); note that we use the function abs() to get the absolute value of zd. 

• print(paste("Z Difference: ", zd)): This command prints zd (the test statistic for the 
difference between the correlations). To make the output nicer we use the paste() 
command to ‘paste’ together a text string explaining what the statistic is, and the 
value of the statistic itself. 

• print(paste("One-Tailed P-Value: ", p)): This command is the same as above but 
prints the value of p to the screen with an explanation of what the value is. 

Once you have executed the above function you can compute differences between 
correlations by simply referring to zdifference() (remembering to include the necessary 
information for r1, r2, n1 and n2). For example, to test the difference between the correlation 
for exam anxiety and performance in males and females (see the book chapter), we would 
execute: 

zdifference(-0.506, -0.381, 52, 51) 

tdifference(-0.441, -0.709, 0.397, 103) 

The output will look like this: 
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[1] "Z Difference:  -0.768709306290097" 
[1] "One-Tailed P-Value:  0.221032949510287" 
 
These values match those computed in the chapter. 

Please Sir, can I have some more … comparing of 
correlations? 

If you want to compare dependent rs then writing a function is again the way to 
go. And again, I have written it for you in the file DSUR Correlations.R. The 
function looks like this: 

 

tdifference<-function(rxy, rxz, rzy, n)  

{ df<-n-3 

 td<-(rxy-rzy)*sqrt((df*(1 + rxz))/(2*(1-rxy^2-rxz^2-rzy^2+(2*rxy*rxz*rzy)))) 

 p <-pt(td, df) 

 print(paste("t Difference: ", td)) 

 print(paste("One-Tailed P-Value: ", p)) 

 } 

As before, let’s break this function down: 
 

• tdifference: This is the name I have given to the function. If we want to use it in the 
future, we therefore would type tdifference() just like we do with built-in functions. 

• function(rxy, rxz, rzy, n): This defines what values are input to the function. To 
calculate the difference between dependent correlations we need to know four 
things: the correlations between all combinations of variables (which I have called 
rxy, rxz, rzy to match the equation in the book), and the sample size on which they 
are based (which I have called n). When we use the function we will have to input 
these four values. So, to calculate the difference for the example in the book we 
would simply execute tdifference(-0.441, -0.709, 0.397, 103). 

• {}: Anything between these brackets is the function itself. It contains a list of 
instructions that tell R what to do. 

• df<-n-3: This computes an object called df (degrees of freedom) which is the sample 
size minus 3. I have computed this value because N-3 gets used a few times for 
various things. 

• td<-(rxy-rzy)*sqrt((df*(1 + rxz))/(2*(1-rxy^2-rxz^2-rzy^2+(2*rxy*rxz*rzy)))): The 
second instruction creates an object called td, which is simply equation (6.12) from 
the book. Note that this command basically takes the values that we input into the 
equation and places them in equation (6.12) to compute the t-value for the 
difference between correlations. 

• p <-pt(td, df): This creates an object, p, which is the one-tailed probability of td 
(which we have already computed). We obtain this using a built in function pt(), 
which is applied to td with its associated degrees of freedom, which we computed 
earlier (df). 

• print(paste("t Difference: ", td)): This command prints td (the test statistic for the 
difference between the correlations). To make the output nicer we use the paste() 
command to ‘paste’ together a text string explaining what the statistic is, and the 
value of the statistic itself. 

• print(paste("One-Tailed P-Value: ", p)): This command is the same as above but 
prints the value of p to the screen with an explanation of what the value is. 

Once you have executed the above function you can compute differences between 
dependent correlations by simply referring to tdifference() (remembering to include the 
necessary information for rxy, rxz, rzy and n). For example, to test the difference between the 
correlation for exam anxiety and performance in males and females (see the book chapter), 
we would execute: 
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tdifference(-0.441, -0.709, 0.397, 103) 

The output will look like this: 
 
[1] "t Difference:  -5.09576822523987" 
[1] "One-Tailed P-Value:  8.21913727738006e-07" 
 
The value of t corresponds to the value calculated in the chapter. 
 

Labcoat Leni’s real research 

Why do you like your lecturers? 

Problem 
Chamorro-Premuzic, T., et al. (2008). Personality and Individual Differences, 44, 965–976. 

 
 

As students you probably have to rate your lecturers at the end of the course. 
There will be some lecturers you like and others that you hate. As a lecturer I find 
this process horribly depressing (although this has a lot to do with the fact that I 

tend focus on negative feedback and ignore the good stuff). There is some 
evidence that students tend to pick courses of lecturers whom they perceive to 
be enthusastic and good communicators. In a fascinating study, Tomas 
Chamorro-Premuzic and his colleagues (Chamorro-Premuzic, Furnham, 
Christopher, Garwood, & Martin, 2008) tested a slightly different hypothesis, 
which was that students tend to like lecturers who are like themselves. (This 

hypothesis will have the students on my course who like my lectures screaming in 
horror.) 

First of all, the authors measured students’ own personalities using a very well-established 
measure (the NEO-FFI) which gives rise to scores on five fundamental personality traits: 
Neuroticism, Extroversion, Openness to experience, Agreeableness and Conscientiousness. 
They also gave students a questionnaire that asked them to have each of a list of 
characteristics. For example, they would be given the description ‘warm: friendly, warm, 
sociable, cheerful, affectionate, outgoing’ and asked to rate how much they wanted to see this 
in a lecturer from −5 (they don’t want this characteristic at all) through 0 (the characteristic is 
not important) to +5 (I really want this characteristic in my lecturer). The characteristics on the 
questionnaire all related personality characteristics measured by the NEO-FFI. As such, the 
authors had a measure of how much a student had each of the five core personality 
characteristics, but also a measure of how much they wanted to see those same 
characteristics in their lecturer.  

In doing so, Tomas and his colleagues could test whether, for instance, extroverted students 
want extrovert lecturers. The data from this study (well, for the variables that I’ve mentioned) 
are in the file Chamorro-Premuzic.dat. Run some Pearson correlations on these variables to 
see if students with certain personality characteristics want to see those characteristics in 
their lecturers. What conclusions can you draw? 

Solution 
We can run this analysis by loading the data: 
 
personalityData = read.delim("Chamorro-Premuzic.dat",  header = TRUE) 
 

and then just pretty much running a Pearson correlation on all the variables. I am going to use 
the rcorr() function because it is able to calculate correlation coefficients for multiple pairs of 
variables and also their corresponding p-values. 

Remember that to use this function you will need the Hmisc package, so (if you haven’t 
already done so) execute: 
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install.packages("Hmisc") 
library(Hmisc) 
 
The annoying thing about rcorr() is that it does not work on dataframes, so we will have to 
convert our personalityData dataframe into a matrix before we can run the correlation 
analysis. This can be done by excecuting the following command: 
 
personalityMatrix<-as.matrix(personalityData[, c("studentN", "studentE", "studentO", 
"studentA", "studentC", "lectureN", "lecturE", "lecturO", "lecturA", "lecturC")]) 

 
We can then run the correlation analysis by executing: 
 
rcorr(personalityMatrix) 

 
Or you could be a real smarty-pants and combine the above two steps:  
 
rcorr(as.matrix(personalityData[, c("studentN", "studentE", "studentO", "studentA", 

"studentC", "lectureN", "lecturE", "lecturO", "lecturA", "lecturC")])) 
 
In the output you will get three matrices. The first matrix displays the Pearson’s correlation 

coefficients, the second displays the sample sizes, and the final matrix displays the p-values 
of the correlation coefficients. I will just include the first and last matrices here, which should 
look like this: 
 

 
            studentN studentE studentO studentA studentC   lecturerN lecturerE lecturerO lecturerA lecturerC 
studentN      1.00    -0.34    -0.06     0.01    -0.20      0.01     -0.08     -0.02      0.10      0.00 
studentE     -0.34     1.00     0.07     0.08     0.19     -0.10      0.15      0.07      0.00     -0.01 
studentO     -0.06     0.07     1.00    -0.04    -0.09     -0.10      0.04      0.20     -0.16     -0.03 
studentA      0.01     0.08    -0.04     1.00     0.52     -0.02      0.05      0.11      0.16      0.20 
studentC     -0.20     0.19    -0.09     0.52     1.00     -0.14      0.10      0.03      0.13      0.22 
lecturerN     0.01    -0.10    -0.10    -0.02    -0.14      1.00      0.00      0.04      0.04     -0.26 
lecturerE    -0.08     0.15     0.04     0.05     0.10      0.00      1.00      0.49      0.12      0.10 
lecturerO    -0.02     0.07     0.20     0.11     0.03      0.04      0.49      1.00      0.24      0.12 
lecturerA     0.10     0.00    -0.16     0.16     0.13      0.04      0.12      0.24      1.00      0.24 
lecturerC     0.00    -0.01    -0.03     0.20     0.22     -0.26      0.10      0.12      0.24      1.00 

 
P 
         studentN studentE studentO studentA studentC   lecturerN lecturerE lecturerO lecturerA lecturerC 
studentN           0.0000   0.2586   0.8961   0.0000    0.8945    0.1756    0.7123    0.0410    0.9560    
studentE  0.0000            0.1599   0.1056   0.0001    0.0448    0.0102    0.1654    0.9315    0.8442    
studentO  0.2586   0.1599            0.4613   0.0655    0.0406    0.4989    0.0000    0.0009    0.4942    
studentA  0.8961   0.1056   0.4613            0.0000    0.6671    0.4118    0.0315    0.0009    0.0000    
studentC  0.0000   0.0001   0.0655   0.0000             0.0046    0.0900    0.5823    0.0072    0.0000    
lecturerN 0.8945   0.0448   0.0406   0.6671   0.0046              0.9745    0.4561    0.3612    0.0000    
lecturerE 0.1756   0.0102   0.4989   0.4118   0.0900    0.9745              0.0000    0.0491    0.0925    
lecturerO 0.7123   0.1654   0.0000   0.0315   0.5823    0.4561    0.0000              0.0000    0.0144    
lecturerA 0.0410   0.9315   0.0009   0.0009   0.0072    0.3612    0.0491    0.0000              0.0000    
lecturerC 0.9560   0.8442   0.4942   0.0000   0.0000    0.0000    0.0925    0.0144    0.0000              

Professor Andy Field� 12/9/13 15:18
Comment: Make all spellings of “lecturer” 
correct in the data file. 
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These tables look pretty horrendous, but there are actually a lot of correlations that we don’t 
need. First, the table is symmetrical around the diagonal, so we can first ignore either the top 
diagonal or the bottom (the values are the same). The second thing is that we’re interested 
only in the correlations between students’ personalities and what they want in lecturers. We’re 
not interested in how their own five personality traits correlated with each other (i.e. if a 
student is neurotic are they conscientious too?) The red rectangles above show the areas of 
the table that contain the information that we need to address our hypothesis. The top right 
red rectangle is a replica of the values reported in the original research paper (part of the 
authors’ table is below so you can see how they reported these values – match these values 
to the values in your output): 

 
 

As for what we can conclude, well, neurotic students tend to want agreeable lecturers, r = 
.10, p < .05; extroverted students tend to want extroverted lecturers, r = .15, p < .05; students 
who are open to experiences tend to want lecturers who are open to experience, r = .20, p < 
.01, and don’t want agreeable lecturers, r = −.17, p < .01; agreeable students want every sort 
of lecturer apart from neurotic and extroverted. This could be because these students are 
agreeable! Finally, conscientious students tend to want conscientious lecturers, r = .22, p < 
.01, and extroverted ones, r = .10, p < .05, but don’t want neurotic ones, r = −.14, p < .01. 
 

Smart Alex’s solutions 

Task 1 

• A student was interested in whether there was a positive relationship between the 
time spent doing an essay and the mark received. He got 45 of his friends and timed 
how long they spent writing an essay (hours) and the percentage they got in the 
essay (essay). He also translated these grades into their degree classifications 
(grade): in the UK, a student can get a first-class mark (the best), an upper second, a 
lower second, a third, a pass or a fail (the worst). Using the data in the file 
EssayMarks.dat find out what the relationship was between the time spent doing an 
essay and the eventual mark in terms of percentage and degree class (draw a 
scatterplot too!). 

 
We’re interested in looking at the relationship between hours spent on an essay and the 
grade obtained. We could simply do a scatterplot of hours spent on the essay (x-axis) and 
essay mark (y-axis).  

First of all, load the data: 
 
essayData = read.delim("EssayMarks.dat",  header = TRUE) 
 
Then create a plot object called scatter: 
scatter<-ggplot(essayData, aes(hours, essay)) 
 
Next add labels to your scatterplot: 
scatter + geom_point(size = 3) + labs(x = "Hours Spent on Essay", y = "Essay Mark 
(%)")  
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The resulting scatterplot should look like this: 
 

 
 

 
Next, we should check whether the data are parametric using the Shapiro–Wilk test (see 

Chapter 5 in the textbook). To do a Shapiro–Wilk test in R, we use the shapiro.test() function. 
We will test the essay and numeracy variables for normality: 

shapiro.test(essayData$essay) 
Shapiro-Wilk normality test 
 
data:  essayData$hours  
W = 0.981, p-value = 0.6615 

shapiro.test(essayData$hours) 
 Shapiro-Wilk normality test 
 
data:  essayData$hours  
W = 0.981, p-value = 0.6615 
 
The Shapiro–Wilk statistics are non-significant (p > .05) for both variables, which indicates 
that they are normally distributed. As such we can use Pearson’s correlation coefficient, the 
result of which is: 

cor.test(essayData$essay, essayData$hours, alternative = "greater", method = 
"pearson") 
 
Pearson's product-moment correlation 
 
data:  essayData$essay and essayData$hours  
t = 1.8145, df = 43, p-value = 0.03829 
alternative hypothesis: true correlation is greater than 0  
95 percent confidence interval: 
 0.01948135 1.00000000  
sample estimates: 
      cor  
0.2666837  
 
I chose a one-tailed test (alternative = “greater”) because a specific prediction was made: 

there would be a positive relationship; that is, the more time you spend on your essay, the 
better the mark you’ll get. This hypothesis is supported because Pearson’s r = .27 (a medium 
effect size), p < .05, is significant. 
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The second part of the question asks us to do the same analysis but when the percentages 
are recoded into degree classifications. The degree classifications are ordinal data (not 
interval): they are ordered categories, so we shouldn’t use Pearson’s test statistic, but 
Spearman’s and Kendall’s ones instead: 

 
cor.test(essayData$hours, essayData$grade, alternative = "less", method = "kendall") 

 
Kendall's rank correlation tau 
 
data:  essayData$hours and essayData$grade  
z = -1.3458, p-value = 0.08918 
alternative hypothesis: true tau is less than 0  
sample estimates: 
       tau  
-0.1575566  
 
cor.test(essayData$hours, essayData$grade, alternative = "less", method = "spearman") 

 
Spearman's rank correlation rho 
 
data:  essayData$hours and essayData$grade  
S = 18110.93, p-value = 0.1019 
alternative hypothesis: true rho is less than 0  
sample estimates: 
       rho  
-0.1930781 
 
In both cases the correlation is non-significant. There was no significant relationship between 
degree grade classification for an essay and the time spent doing it, ρ = –.19, ns, and τ = –
.16, ns. Note that the direction of the relationship has reversed. This has happened because 
the essay marks were recoded as 1 (first), 2 (upper second), 3 (lower second), and 4 (third), 
so high grades were represented by low numbers! 

This illustrates one of the benefits of not taking continuous data (like percentages) and 
transforming them into categorical data: when you do, you lose information and often 
statistical power!  
 

Task 2 

• Using the ChickFlick.dat data from Chapter 3, is there a relationship between 
gender and arousal? Using the same data, is there a relationship between the film 
watched and arousal? 

 
Now, both gender and the film watched are categorical variables with two categories. 
Therefore, we need to look at these relationships using point-biserial correlations: 

 
cor.test(chickFlick$gender, chickFlick$arousal) 
 
Pearson's product-moment correlation 
 
data:  chickFlick$gender and chickFlick$arousal  
t = -1.1291, df = 38, p-value = 0.2659 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 -0.4655482  0.1391519  
sample estimates: 
       cor  
-0.1801672  
 
 
cor.test(chickFlick$film, chickFlick$arousal) 
 
Pearson's product-moment correlation 
 
data:  chickFlick$film and chickFlick$arousal  
t = 5.1104, df = 38, p-value = 9.4e-06 
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alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 0.4077815 0.7922253  
sample estimates: 
      cor  
0.6382193  
 

In both cases I used a two-tailed test because no prediction was made. As you can see, 
there was no significant relationship between gender and arousal, rpb = –.18, ns. However, 
there was a significant relationship between the film watched and arousal, rpb = –.64, p < 
.001. Looking at how the groups were coded, you should see that Bridget Jones’s Diary had a 
code of 1, and Memento had a code of 2, therefore this result reflects the fact that as film 
goes up (changes from 1 to 2) arousal goes up. Put another way, as the film changes from 
Bridget Jones’s Diary to Memento, arousal increases. So, Memento gave rise to the greater 
arousal levels. 

Task 3 

• As a statistics lecturer I am always interested in the factors that determine whether a 
student will do well on a statistics course. One potentially important factor is their 
previous expertise with mathematics. Imagine I took 25 students and looked at their 
degree grades for my statistics course at the end of their first year at university: first, 
upper second, lower second and third class. I also asked these students what grade 
they got in their GCSE maths exams. In the UK GCSEs are school exams taken at 
age 16 that are graded A, B, C, D, E or F (an A grade is better than all of the lower 
grades). The data for this study are in the file grades.csv. Carry out the appropriate 
analysis to see if GCSE maths grades correlate with first-year statistics grades.  

 
Let’s look at these variables. In the UK, a student can get a first-class mark, an upper second, 
a lower second, a third, a pass or a fail. These grades are categories, but they have an order 
to them (an upper second is better than a lower second). In most of the UK, GCSEs are 
school exams taken at age 16 that are graded A, B, C, D, E or F. Again, these grades are 
categories that have an order of importance (an A grade is better than all of the lower 
grades). When you have categories like these that can be ordered in a meaningful way, the 
data are said to be ordinal. The data are not interval, because a first-class degree 
encompasses a 30% range (70–100%) whereas an upper second only covers a 10% range 
(60–70%). When data have been measured at only the ordinal level they are said to be non-
parametric and Pearson’s correlation is not appropriate. Therefore, the Spearman correlation 
coefficient is used. 

As always, we need to load the data first: 
 
gradesData = read.csv("grades.csv", header = TRUE) 

 
We can then view the data by executing: 

 
gradesData 

 
The data are in two columns: one labelled stats and one labelled gcse. Each of the 
categories described above has been coded with a numeric value. In both cases, the highest 
grade (first class or A grade) has been coded with the value 1, with subsequent categories 
being labelled 2, 3 and so on.  

To conduct a Spearman’s correlation, we can execute the following command: 
 

cor.test(gradesData$gcse, gradesData$stats, alternative = "greater", method = 
"spearman") 

 
Note that I have specified a one-tailed test by including alternative = “greater”. This is 

because earlier I predicted that better grades in GCSE maths would correlate with better 
degree grades for my statistics course. This hypothesis is for a positive directional 
relationship and so alternative = “greater” should be specified. 
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Spearman's rank correlation rho 
 
data:  gradesData$gcse and gradesData$stats  
S = 1418.034, p-value = 0.01121 
alternative hypothesis: true rho is greater than 0  
sample estimates: 
      rho  
0.4546021  
 

The output shows the Spearman correlation on the variables stats and gcse. The output 
shows the correlation coefficient between the two variables (.455) and the significance value 
of this coefficient (.011). The significance value for this correlation coefficient is less than .05; 
therefore, it can be concluded that there is a significant relationship between a student’s 
grade in GCSE maths and their degree grade for their statistics course. The correlation itself 
is positive: therefore, we can conclude that as GCSE grades improve, there is a 
corresponding improvement in degree grades for statistics. As such, the hypothesis was 
supported.  

We could also look at Kendall’s correlation by simply changing method = “spearman” to 
method = “kendall” in the previous code:  
 
cor.test(gradesData$gcse, gradesData$stats, alternative = "greater", method = 
"kendall") 
 
Kendall's rank correlation tau 
 
data:  gradesData$gcse and gradesData$stats  
z = 2.1794, p-value = 0.01465 
alternative hypothesis: true tau is greater than 0  
sample estimates: 
      tau  
0.3539614  

 
The actual value of the correlation coefficient is less than Spearman’s correlation (it has 

decreased from .455 to .354). Despite the difference in the correlation coefficients, we can 
still interpret this result as being a highly significant positive relationship (because the 
significance value of .015 is less than .05). However, Kendall’s value is a more accurate 
gauge of what the correlation in the population would be. As with Pearson’s correlation, we 
cannot assume that the GCSE grades caused the degree students to do better in their 
statistics course. 

We could report these results as follows: 
 There was a positive relationship between a person’s statistics grade and their GCSE 

maths grade, rs = .46, p < .05.  
 There was a positive relationship between a person’s statistics grade and their GCSE 

maths grade, τ = .35, p < .05. (Note that I’ve quoted Kendall’s tau here.) 

 


