
DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 1

Correlation

Self-test answers

• Enter the advert data and use ggplot2 to produce a scatterplot (number of
packets bought on the y-axis, and adverts watched on the x-axis) of the
data.

You can get a basic scatterplot by executing the following commands:

scatter<-ggplot(advertData, aes(adverts, packets))

scatter + geom_point(size = 3) + labs(x = "Adverts", y = "Packets")

Your scatterplot should come out like this:

This graph looks horrible because ggplot2 has not scaled the axes from 0. If yours looks like
this too, then, as an additional task, edit it so that the axes both start at 0. While you’re at it,
label the axes nicely and make the points larger. Mine ended up like this:

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 2

Ah, that’s better. This is the code that I used:

scatter<-ggplot(advertData, aes(adverts, packets))

scatter + geom_point(size = 3) + labs(x = "Adverts", y = "Packets") +
scale_y_continuous(limits=c(0, 15), breaks=0:15) + scale_x_continuous(limits=c(0, 9),
breaks=0:9)

• Load the Exam Anxiety.dat file into a dataframe called examData.

Assuming you have set your working directory to be the location of the file, you can load the
data by executing this command:

examData = read.delim("Exam Anxiety.dat", header = TRUE)

Alternatively, if you want to select the file using a dialog box you could execute:

examData = read.delim(file.choose(), header = TRUE)

• Compute the confidence intervals for the relationships between the
time spent revising (Revise) and both exam performance (Exam)
and exam anxiety (Anxiety).

cor.test(examData$Revise, examData$Exam)

cor.test(examData$Anxiety, examData$Revise)

The outputs will be:

> cor.test(examData$Revise, examData$Exam)

 Pearson's product-moment correlation

data: examData$Revise and examData$Exam
t = 4.3434, df = 101, p-value = 3.343e-05

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 3

alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.2200938 0.5481602
sample estimates:
 cor
0.3967207

> cor.test(examData$Anxiety, examData$Revise)

 Pearson's product-moment correlation

data: examData$Anxiety and examData$Revise
t = -10.1111, df = 101, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.7938168 -0.5977733
sample estimates:
 cor
-0.7092493

• Did creativity cause success in the World’s Biggest Liar competition?

No it didn’t. Well, it might have done, but we can’t tell this from a correlation coefficient. This
is because although we found a significant relationship between creativity and position, we
cannot infer causality from a correlation coefficient.

• Conduct a Pearson correlation analysis of the advert data from the
beginning of the chapter.

Execute these commands:

adverts<-c(5,4,4,6,8)

packets<-c(8,9,10,13,15)

cor.test(adverts, packets)

The output will be:

 Pearson's product-moment correlation

data: adverts and packets
t = 3.0732, df = 3, p-value = 0.05443
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.0479747 0.9914236
sample estimates:
 cor
0.871165

This value is the same as that calculated in the book.

• Conduct bootstrap analysis of the Pearson and Spearman
correlations for the examData2 dataframe.

Here are the code and output for the Pearson correlation between exam performance and
exam anxiety:

bootR<-function(examData2,i) cor(examData2$Exam[i], examData2$Anxiety[i], use =
"complete.obs")

boot_pearson<-boot(examData2, bootR, 2000)

boot_pearson

boot.ci(boot_pearson)

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 4

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = examData2, statistic = bootR, R = 2000)

Bootstrap Statistics :
 original bias std. error
t1* -0.4409934 0.002317646 0.06352735

> boot.ci(boot_pearson)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = boot_pearson)

Intervals :
Level Normal Basic
95% (-0.5678, -0.3188) (-0.5752, -0.3288)

Level Percentile BCa
95% (-0.5532, -0.3068) (-0.5582, -0.3120)
Calculations and Intervals on Original Scale

Here are the code and output for the Pearson correlation between exam revision and exam

anxiety:

bootR<-function(examData2,i) cor(examData2$Revise[i], examData2$Anxiety[i], use =
"complete.obs")

boot_pearson<-boot(examData2, bootR, 2000)

boot_pearson

boot.ci(boot_pearson)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = examData2, statistic = bootR, R = 2000)

Bootstrap Statistics :
 original bias std. error
t1* -0.7092493 0.005252507 0.1126909

> boot.ci(boot_pearson)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = boot_pearson)

Intervals :
Level Normal Basic
95% (-0.9354, -0.4936) (-0.9773, -0.5467)

Level Percentile BCa
95% (-0.8718, -0.4412) (-0.8519, -0.3415)
Calculations and Intervals on Original Scale

Here are the code and output for the Pearson correlation between exam performance and

exam revision:

bootR<-function(examData2,i) cor(examData2$Revise[i], examData2$Exam[i], use =
"complete.obs")

boot_pearson<-boot(examData2, bootR, 2000)

boot_pearson

boot.ci(boot_pearson)
ORDINARY NONPARAMETRIC BOOTSTRAP

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 5

Call:
boot(data = examData2, statistic = bootR, R = 2000)

Bootstrap Statistics :
 original bias std. error
t1* 0.3967207 -0.004676362 0.06795331

> boot.ci(boot_pearson)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = boot_pearson)

Intervals :
Level Normal Basic
95% (0.2682, 0.5346) (0.2749, 0.5404)

Level Percentile BCa
95% (0.2530, 0.5186) (0.2596, 0.5227)
Calculations and Intervals on Original Scale

Here are the code and output for the Spearman correlation between exam performance and
exam anxiety:

bootRho<-function(examData2,i) cor(examData2$Exam[i], examData2$Anxiety[i], use =
"complete.obs", method = "spearman")

boot_spearman<-boot(examData2, bootRho, 2000)

boot_spearman

boot.ci(boot_spearman)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = examData2, statistic = bootRho, R = 2000)

Bootstrap Statistics :
 original bias std. error
t1* -0.4046141 0.002405364 0.08018193

> boot.ci(boot_spearman)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = boot_spearman)

Intervals :
Level Normal Basic
95% (-0.5642, -0.2499) (-0.5717, -0.2554)

Level Percentile BCa
95% (-0.5538, -0.2375) (-0.5523, -0.2340)
Calculations and Intervals on Original Scale

Here are the code and output for the Spearman correlation between exam revision and

exam anxiety:

bootRho<-function(examData2,i) cor(examData2$Revise[i], examData2$Anxiety[i], use =
"complete.obs", method = "spearman")

boot_spearman <-boot(examData2, bootRho, 2000)

boot_spearman

boot.ci(boot_spearman)

ORDINARY NONPARAMETRIC BOOTSTRAP

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 6

Call:
boot(data = examData2, statistic = bootRho, R = 2000)

Bootstrap Statistics :
 original bias std. error
t1* -0.6219694 0.003764904 0.0819895

> boot.ci(boot_spearman)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = boot_spearman)

Intervals :
Level Normal Basic
95% (-0.7864, -0.4650) (-0.7982, -0.4773)

Level Percentile BCa
95% (-0.7666, -0.4458) (-0.7588, -0.4319)
Calculations and Intervals on Original Scale

Here are the code and output for the Spearman correlation between exam performance and
exam revision:

bootRho<-function(examData2,i) cor(examData2$Revise[i], examData2$Exam[i], use =
"complete.obs", method = "spearman")

boot_spearman <-boot(examData2, bootRho, 2000)

boot_spearman

boot.ci(boot_spearman)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = examData2, statistic = bootRho, R = 2000)

Bootstrap Statistics :
 original bias std. error
t1* 0.3498948 -0.003656983 0.09103305
> boot.ci(boot_spearman)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = boot_spearman)

Intervals :
Level Normal Basic
95% (0.1751, 0.5320) (0.1865, 0.5423)

Level Percentile BCa
95% (0.1575, 0.5133) (0.1490, 0.5097)

• Carry out a Pearson correlation on time and gender.

cor.test(catData$time, catData$gender)

The output is shown in the chapter.

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 7

• Carry out a Pearson correlation on time and recode.

cor.test(catData$time, catData$recode)

The output is:
 Pearson's product-moment correlation

data: catData$time and catData$recode
t = -3.1138, df = 58, p-value = 0.002868
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.576936 -0.137769
sample estimates:
 cor
-0.3784542

• Use the subset() function to compute the correlation coefficient between
exam anxiety and exam performance in men and women.

To create separate dataframes for males and females we can use the subset command as
follows:

maleExam<-subset(examData, Gender == "Male", select= c("Exam", "Anxiety"))

femaleExam<-subset(examData, Gender == "Female", select= c("Exam", "Anxiety"))

In both cases we have created new dataframes that contain only male data (maleExam) and
female data (femaleExam). We have done this by taking the examData dataframe and
selecting cases based on the logical operator Gender == “Male” or Gender == “Female”; note
that Gender is a string variable, containing the words ‘Male’ and ‘Female’ (remember the
capital letter), which is why we have specified the condition in the way we have. Finally, we
use the select command to extract the numeric variables of interest (i.e., Exam and Anxiety).
These dataframes can then be fed into the cor() function to get the correlation coefficients:

cor(maleExam)

cor(femaleExam)

Execute these commands, and the output for males will look like this:

 Exam Anxiety
Exam 1.0000000 -0.5056874
Anxiety -0.5056874 1.0000000

For females, the output is as follows:

 Exam Anxiety
Exam 1.0000000 -0.3813845
Anxiety -0.3813845 1.0000000

The book chapter has some interpretation of these findings and suggestions for how to
compare the coefficients for males and females.

Oliver Twisted

Please Sir, can I have some more … covariance and
variance?

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 8

There are two functions very similar to cor() that can be used for computing
variance and covariances; these are var() and cov(). These variables take the
following general form:

var(x, y, na.rm = FALSE, use = “string”)

cov(x, y, use = “string”, method = c(“pearson”, “kendall”, “spearman”))

We use both these functions much as we do cor().
• x: This is a numeric variable or dataframe.

• y: This is another numeric variable (does not need to be specified if x, above, is a
dataframe).

• use: This is a character string that specifies how missing values are handled. The
strings can be: (1) “everything”, which will mean that R will output an NA instead of a
correlation coefficient for any correlations involving variables containing missing
values; (2) “all.obs”, which will use all observations and, therefore, returns an error
message if there are any missing values in the data; (3) “complete.obs”, in which
correlations are computed from only cases that are complete for all variables; or (4)
“pairwise.complete.obs”, in which correlations between pairs of variables are
computed for cases that are complete for those two variables.

• method: This enables you to specify whether you want “pearson”, “spearman” or
“kendall” covariances. If you want more than one type you can specify a list using the
c() function; for example, c(“pearson”, “spearman”) would produce both types of
covariances.

• na.rm: This determines whether missing values should be removed (TRUE) or if they
should be included (FALSE), the default.

Let’s input the advert data from the book chapter by executing the following commands:

adverts<-c(5,4,4,6,8)

packets<-c(8,9,10,13,15)

advertData<-data.frame(adverts, packets)

If we want to compute the covariance between these two variables we execute:

cov(adverts, packets)

which gives us the following output:

[1] 4.25

This is the value calculated in equation (6.2).

If we want to compute the variance of a variable we execute:

var(adverts)

which gives us the following output:

[1] 2.8

This value could be calculated manually from equation (6.1).

If you want the covariances and variances to be computed at the same time, then enter the
dataframe into cov():

cov(advertData)

This gives the following output:

 adverts packets
adverts 2.80 4.25
packets 4.25 8.50

The value of the covariance between the two variables is 4.25, which is the same value as
was calculated from equation (6.2). The covariance within each variable is the same as the
variance for each variable (so the variance for the number of adverts seen is 2.8, and the
variance for the number of packets bought is 8.5). These variances can be calculated
manually from equation (6.1).

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 9

Please Sir, can I have some more … functions?

If you want to compare two independent rs (i.e. rs measuring the same thing in
two different samples) then probably the best way to do it is to write yourself a
function that describes equation (6.11) in the book. The reason why writing a
function is a good idea is that, having executed the function once, you can use
it over and over again within your current R session. This saves you having to
write out the equation every time you want to compare two correlations.

If you access the DSUR Correlations.R file from the companion website you will
see that I have written the function or you. The function looks like this:

zdifference<-function(r1, r2, n1, n2)

{zd<-(atanh(r1)-atanh(r2))/sqrt(1/(n1-3)+1/(n2-3))

 p <-1 - pnorm(abs(zd))

 print(paste("Z Difference: ", zd))

 print(paste("One-Tailed P-Value: ", p))

 }

This looks pretty horrendous, but before you run off and find a pencil with which to stab
yourself in the head we’ll try to break it down into its constituent parts:

• zdifference: This is the name I have given to the function. If we want to use it in the
future, we therefore would type zdifference() just like we do with built in functions.

• function(r1, r2, n1, n2): This defines what values are input to the function. To
calculate the difference between correlations we need to know four things: the
correlations (which I have called r1 and r2, but I could have given then any label I
liked), and the sample sizes on which they are based (which I have called n1 and
n2). When we use the function we will have to input these four values. So, to
calculate the difference for the example in the book we would simply execute
zdifference(-0.506, -0.381, 52, 51).

• {}: Anything between these brackets is the function itself. It contains a list of
instructions that tell R what to do.

• zd<-(atanh(r1)-atanh(r2))/sqrt(1/(n1-3)+1/(n2-3)): The first instruction is to create an
object called zd, which is simply equation (6.11) from the book. We use a built-in
function, atanh(), to get the z of each correlation coefficient. The rest is simply
inputting the sample sizes (n1 and n2) into the equation.

• p <-1 - pnorm(abs(zd)): This creates an object, p, which is the one-tailed probability
of zd (which we have already computed). We obtain this using a built in function
pnorm(), which is applied to the absolute value of zd (i.e., ignore the plus or minus
sign); note that we use the function abs() to get the absolute value of zd.

• print(paste("Z Difference: ", zd)): This command prints zd (the test statistic for the
difference between the correlations). To make the output nicer we use the paste()
command to ‘paste’ together a text string explaining what the statistic is, and the
value of the statistic itself.

• print(paste("One-Tailed P-Value: ", p)): This command is the same as above but
prints the value of p to the screen with an explanation of what the value is.

Once you have executed the above function you can compute differences between
correlations by simply referring to zdifference() (remembering to include the necessary
information for r1, r2, n1 and n2). For example, to test the difference between the correlation
for exam anxiety and performance in males and females (see the book chapter), we would
execute:

zdifference(-0.506, -0.381, 52, 51)

tdifference(-0.441, -0.709, 0.397, 103)

The output will look like this:

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 10

[1] "Z Difference: -0.768709306290097"
[1] "One-Tailed P-Value: 0.221032949510287"

These values match those computed in the chapter.

Please Sir, can I have some more … comparing of
correlations?

If you want to compare dependent rs then writing a function is again the way to
go. And again, I have written it for you in the file DSUR Correlations.R. The
function looks like this:

tdifference<-function(rxy, rxz, rzy, n)

{ df<-n-3

 td<-(rxy-rzy)*sqrt((df*(1 + rxz))/(2*(1-rxy^2-rxz^2-rzy^2+(2*rxy*rxz*rzy))))

 p <-pt(td, df)

 print(paste("t Difference: ", td))

 print(paste("One-Tailed P-Value: ", p))

 }

As before, let’s break this function down:

• tdifference: This is the name I have given to the function. If we want to use it in the
future, we therefore would type tdifference() just like we do with built-in functions.

• function(rxy, rxz, rzy, n): This defines what values are input to the function. To
calculate the difference between dependent correlations we need to know four
things: the correlations between all combinations of variables (which I have called
rxy, rxz, rzy to match the equation in the book), and the sample size on which they
are based (which I have called n). When we use the function we will have to input
these four values. So, to calculate the difference for the example in the book we
would simply execute tdifference(-0.441, -0.709, 0.397, 103).

• {}: Anything between these brackets is the function itself. It contains a list of
instructions that tell R what to do.

• df<-n-3: This computes an object called df (degrees of freedom) which is the sample
size minus 3. I have computed this value because N-3 gets used a few times for
various things.

• td<-(rxy-rzy)*sqrt((df*(1 + rxz))/(2*(1-rxy^2-rxz^2-rzy^2+(2*rxy*rxz*rzy)))): The
second instruction creates an object called td, which is simply equation (6.12) from
the book. Note that this command basically takes the values that we input into the
equation and places them in equation (6.12) to compute the t-value for the
difference between correlations.

• p <-pt(td, df): This creates an object, p, which is the one-tailed probability of td
(which we have already computed). We obtain this using a built in function pt(),
which is applied to td with its associated degrees of freedom, which we computed
earlier (df).

• print(paste("t Difference: ", td)): This command prints td (the test statistic for the
difference between the correlations). To make the output nicer we use the paste()
command to ‘paste’ together a text string explaining what the statistic is, and the
value of the statistic itself.

• print(paste("One-Tailed P-Value: ", p)): This command is the same as above but
prints the value of p to the screen with an explanation of what the value is.

Once you have executed the above function you can compute differences between
dependent correlations by simply referring to tdifference() (remembering to include the
necessary information for rxy, rxz, rzy and n). For example, to test the difference between the
correlation for exam anxiety and performance in males and females (see the book chapter),
we would execute:

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 11

tdifference(-0.441, -0.709, 0.397, 103)

The output will look like this:

[1] "t Difference: -5.09576822523987"
[1] "One-Tailed P-Value: 8.21913727738006e-07"

The value of t corresponds to the value calculated in the chapter.

Labcoat Leni’s real research

Why do you like your lecturers?

Problem
Chamorro-Premuzic, T., et al. (2008). Personality and Individual Differences, 44, 965–976.

As students you probably have to rate your lecturers at the end of the course.
There will be some lecturers you like and others that you hate. As a lecturer I find
this process horribly depressing (although this has a lot to do with the fact that I

tend focus on negative feedback and ignore the good stuff). There is some
evidence that students tend to pick courses of lecturers whom they perceive to
be enthusastic and good communicators. In a fascinating study, Tomas
Chamorro-Premuzic and his colleagues (Chamorro-Premuzic, Furnham,
Christopher, Garwood, & Martin, 2008) tested a slightly different hypothesis,
which was that students tend to like lecturers who are like themselves. (This

hypothesis will have the students on my course who like my lectures screaming in
horror.)

First of all, the authors measured students’ own personalities using a very well-established
measure (the NEO-FFI) which gives rise to scores on five fundamental personality traits:
Neuroticism, Extroversion, Openness to experience, Agreeableness and Conscientiousness.
They also gave students a questionnaire that asked them to have each of a list of
characteristics. For example, they would be given the description ‘warm: friendly, warm,
sociable, cheerful, affectionate, outgoing’ and asked to rate how much they wanted to see this
in a lecturer from −5 (they don’t want this characteristic at all) through 0 (the characteristic is
not important) to +5 (I really want this characteristic in my lecturer). The characteristics on the
questionnaire all related personality characteristics measured by the NEO-FFI. As such, the
authors had a measure of how much a student had each of the five core personality
characteristics, but also a measure of how much they wanted to see those same
characteristics in their lecturer.

In doing so, Tomas and his colleagues could test whether, for instance, extroverted students
want extrovert lecturers. The data from this study (well, for the variables that I’ve mentioned)
are in the file Chamorro-Premuzic.dat. Run some Pearson correlations on these variables to
see if students with certain personality characteristics want to see those characteristics in
their lecturers. What conclusions can you draw?

Solution
We can run this analysis by loading the data:

personalityData = read.delim("Chamorro-Premuzic.dat", header = TRUE)

and then just pretty much running a Pearson correlation on all the variables. I am going to use
the rcorr() function because it is able to calculate correlation coefficients for multiple pairs of
variables and also their corresponding p-values.

Remember that to use this function you will need the Hmisc package, so (if you haven’t
already done so) execute:

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 12

install.packages("Hmisc")
library(Hmisc)

The annoying thing about rcorr() is that it does not work on dataframes, so we will have to
convert our personalityData dataframe into a matrix before we can run the correlation
analysis. This can be done by excecuting the following command:

personalityMatrix<-as.matrix(personalityData[, c("studentN", "studentE", "studentO",
"studentA", "studentC", "lectureN", "lecturE", "lecturO", "lecturA", "lecturC")])

We can then run the correlation analysis by executing:

rcorr(personalityMatrix)

Or you could be a real smarty-pants and combine the above two steps:

rcorr(as.matrix(personalityData[, c("studentN", "studentE", "studentO", "studentA",

"studentC", "lectureN", "lecturE", "lecturO", "lecturA", "lecturC")]))

In the output you will get three matrices. The first matrix displays the Pearson’s correlation

coefficients, the second displays the sample sizes, and the final matrix displays the p-values
of the correlation coefficients. I will just include the first and last matrices here, which should
look like this:

 studentN studentE studentO studentA studentC lecturerN lecturerE lecturerO lecturerA lecturerC
studentN 1.00 -0.34 -0.06 0.01 -0.20 0.01 -0.08 -0.02 0.10 0.00
studentE -0.34 1.00 0.07 0.08 0.19 -0.10 0.15 0.07 0.00 -0.01
studentO -0.06 0.07 1.00 -0.04 -0.09 -0.10 0.04 0.20 -0.16 -0.03
studentA 0.01 0.08 -0.04 1.00 0.52 -0.02 0.05 0.11 0.16 0.20
studentC -0.20 0.19 -0.09 0.52 1.00 -0.14 0.10 0.03 0.13 0.22
lecturerN 0.01 -0.10 -0.10 -0.02 -0.14 1.00 0.00 0.04 0.04 -0.26
lecturerE -0.08 0.15 0.04 0.05 0.10 0.00 1.00 0.49 0.12 0.10
lecturerO -0.02 0.07 0.20 0.11 0.03 0.04 0.49 1.00 0.24 0.12
lecturerA 0.10 0.00 -0.16 0.16 0.13 0.04 0.12 0.24 1.00 0.24
lecturerC 0.00 -0.01 -0.03 0.20 0.22 -0.26 0.10 0.12 0.24 1.00

P
 studentN studentE studentO studentA studentC lecturerN lecturerE lecturerO lecturerA lecturerC
studentN 0.0000 0.2586 0.8961 0.0000 0.8945 0.1756 0.7123 0.0410 0.9560
studentE 0.0000 0.1599 0.1056 0.0001 0.0448 0.0102 0.1654 0.9315 0.8442
studentO 0.2586 0.1599 0.4613 0.0655 0.0406 0.4989 0.0000 0.0009 0.4942
studentA 0.8961 0.1056 0.4613 0.0000 0.6671 0.4118 0.0315 0.0009 0.0000
studentC 0.0000 0.0001 0.0655 0.0000 0.0046 0.0900 0.5823 0.0072 0.0000
lecturerN 0.8945 0.0448 0.0406 0.6671 0.0046 0.9745 0.4561 0.3612 0.0000
lecturerE 0.1756 0.0102 0.4989 0.4118 0.0900 0.9745 0.0000 0.0491 0.0925
lecturerO 0.7123 0.1654 0.0000 0.0315 0.5823 0.4561 0.0000 0.0000 0.0144
lecturerA 0.0410 0.9315 0.0009 0.0009 0.0072 0.3612 0.0491 0.0000 0.0000
lecturerC 0.9560 0.8442 0.4942 0.0000 0.0000 0.0000 0.0925 0.0144 0.0000

Professor Andy Field� 12/9/13 15:18
Comment: Make all spellings of “lecturer”
correct in the data file.

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 13

These tables look pretty horrendous, but there are actually a lot of correlations that we don’t
need. First, the table is symmetrical around the diagonal, so we can first ignore either the top
diagonal or the bottom (the values are the same). The second thing is that we’re interested
only in the correlations between students’ personalities and what they want in lecturers. We’re
not interested in how their own five personality traits correlated with each other (i.e. if a
student is neurotic are they conscientious too?) The red rectangles above show the areas of
the table that contain the information that we need to address our hypothesis. The top right
red rectangle is a replica of the values reported in the original research paper (part of the
authors’ table is below so you can see how they reported these values – match these values
to the values in your output):

As for what we can conclude, well, neurotic students tend to want agreeable lecturers, r =
.10, p < .05; extroverted students tend to want extroverted lecturers, r = .15, p < .05; students
who are open to experiences tend to want lecturers who are open to experience, r = .20, p <
.01, and don’t want agreeable lecturers, r = −.17, p < .01; agreeable students want every sort
of lecturer apart from neurotic and extroverted. This could be because these students are
agreeable! Finally, conscientious students tend to want conscientious lecturers, r = .22, p <
.01, and extroverted ones, r = .10, p < .05, but don’t want neurotic ones, r = −.14, p < .01.

Smart Alex’s solutions

Task 1

• A student was interested in whether there was a positive relationship between the
time spent doing an essay and the mark received. He got 45 of his friends and timed
how long they spent writing an essay (hours) and the percentage they got in the
essay (essay). He also translated these grades into their degree classifications
(grade): in the UK, a student can get a first-class mark (the best), an upper second, a
lower second, a third, a pass or a fail (the worst). Using the data in the file
EssayMarks.dat find out what the relationship was between the time spent doing an
essay and the eventual mark in terms of percentage and degree class (draw a
scatterplot too!).

We’re interested in looking at the relationship between hours spent on an essay and the
grade obtained. We could simply do a scatterplot of hours spent on the essay (x-axis) and
essay mark (y-axis).

First of all, load the data:

essayData = read.delim("EssayMarks.dat", header = TRUE)

Then create a plot object called scatter:
scatter<-ggplot(essayData, aes(hours, essay))

Next add labels to your scatterplot:
scatter + geom_point(size = 3) + labs(x = "Hours Spent on Essay", y = "Essay Mark
(%)")

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 14

The resulting scatterplot should look like this:

Next, we should check whether the data are parametric using the Shapiro–Wilk test (see

Chapter 5 in the textbook). To do a Shapiro–Wilk test in R, we use the shapiro.test() function.
We will test the essay and numeracy variables for normality:

shapiro.test(essayData$essay)
Shapiro-Wilk normality test

data: essayData$hours
W = 0.981, p-value = 0.6615

shapiro.test(essayData$hours)
 Shapiro-Wilk normality test

data: essayData$hours
W = 0.981, p-value = 0.6615

The Shapiro–Wilk statistics are non-significant (p > .05) for both variables, which indicates
that they are normally distributed. As such we can use Pearson’s correlation coefficient, the
result of which is:

cor.test(essayData$essay, essayData$hours, alternative = "greater", method =
"pearson")

Pearson's product-moment correlation

data: essayData$essay and essayData$hours
t = 1.8145, df = 43, p-value = 0.03829
alternative hypothesis: true correlation is greater than 0
95 percent confidence interval:
 0.01948135 1.00000000
sample estimates:
 cor
0.2666837

I chose a one-tailed test (alternative = “greater”) because a specific prediction was made:

there would be a positive relationship; that is, the more time you spend on your essay, the
better the mark you’ll get. This hypothesis is supported because Pearson’s r = .27 (a medium
effect size), p < .05, is significant.

Hours Spent on Essay

E
ss

ay
 M

ar
k

(%
)

50

55

60

65

70

75

4 6 8 10 12 14

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 15

The second part of the question asks us to do the same analysis but when the percentages
are recoded into degree classifications. The degree classifications are ordinal data (not
interval): they are ordered categories, so we shouldn’t use Pearson’s test statistic, but
Spearman’s and Kendall’s ones instead:

cor.test(essayData$hours, essayData$grade, alternative = "less", method = "kendall")

Kendall's rank correlation tau

data: essayData$hours and essayData$grade
z = -1.3458, p-value = 0.08918
alternative hypothesis: true tau is less than 0
sample estimates:
 tau
-0.1575566

cor.test(essayData$hours, essayData$grade, alternative = "less", method = "spearman")

Spearman's rank correlation rho

data: essayData$hours and essayData$grade
S = 18110.93, p-value = 0.1019
alternative hypothesis: true rho is less than 0
sample estimates:
 rho
-0.1930781

In both cases the correlation is non-significant. There was no significant relationship between
degree grade classification for an essay and the time spent doing it, ρ = –.19, ns, and τ = –
.16, ns. Note that the direction of the relationship has reversed. This has happened because
the essay marks were recoded as 1 (first), 2 (upper second), 3 (lower second), and 4 (third),
so high grades were represented by low numbers!

This illustrates one of the benefits of not taking continuous data (like percentages) and
transforming them into categorical data: when you do, you lose information and often
statistical power!

Task 2

• Using the ChickFlick.dat data from Chapter 3, is there a relationship between
gender and arousal? Using the same data, is there a relationship between the film
watched and arousal?

Now, both gender and the film watched are categorical variables with two categories.
Therefore, we need to look at these relationships using point-biserial correlations:

cor.test(chickFlick$gender, chickFlick$arousal)

Pearson's product-moment correlation

data: chickFlick$gender and chickFlick$arousal
t = -1.1291, df = 38, p-value = 0.2659
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.4655482 0.1391519
sample estimates:
 cor
-0.1801672

cor.test(chickFlick$film, chickFlick$arousal)

Pearson's product-moment correlation

data: chickFlick$film and chickFlick$arousal
t = 5.1104, df = 38, p-value = 9.4e-06

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 16

alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.4077815 0.7922253
sample estimates:
 cor
0.6382193

In both cases I used a two-tailed test because no prediction was made. As you can see,
there was no significant relationship between gender and arousal, rpb = –.18, ns. However,
there was a significant relationship between the film watched and arousal, rpb = –.64, p <
.001. Looking at how the groups were coded, you should see that Bridget Jones’s Diary had a
code of 1, and Memento had a code of 2, therefore this result reflects the fact that as film
goes up (changes from 1 to 2) arousal goes up. Put another way, as the film changes from
Bridget Jones’s Diary to Memento, arousal increases. So, Memento gave rise to the greater
arousal levels.

Task 3

• As a statistics lecturer I am always interested in the factors that determine whether a
student will do well on a statistics course. One potentially important factor is their
previous expertise with mathematics. Imagine I took 25 students and looked at their
degree grades for my statistics course at the end of their first year at university: first,
upper second, lower second and third class. I also asked these students what grade
they got in their GCSE maths exams. In the UK GCSEs are school exams taken at
age 16 that are graded A, B, C, D, E or F (an A grade is better than all of the lower
grades). The data for this study are in the file grades.csv. Carry out the appropriate
analysis to see if GCSE maths grades correlate with first-year statistics grades.

Let’s look at these variables. In the UK, a student can get a first-class mark, an upper second,
a lower second, a third, a pass or a fail. These grades are categories, but they have an order
to them (an upper second is better than a lower second). In most of the UK, GCSEs are
school exams taken at age 16 that are graded A, B, C, D, E or F. Again, these grades are
categories that have an order of importance (an A grade is better than all of the lower
grades). When you have categories like these that can be ordered in a meaningful way, the
data are said to be ordinal. The data are not interval, because a first-class degree
encompasses a 30% range (70–100%) whereas an upper second only covers a 10% range
(60–70%). When data have been measured at only the ordinal level they are said to be non-
parametric and Pearson’s correlation is not appropriate. Therefore, the Spearman correlation
coefficient is used.

As always, we need to load the data first:

gradesData = read.csv("grades.csv", header = TRUE)

We can then view the data by executing:

gradesData

The data are in two columns: one labelled stats and one labelled gcse. Each of the
categories described above has been coded with a numeric value. In both cases, the highest
grade (first class or A grade) has been coded with the value 1, with subsequent categories
being labelled 2, 3 and so on.

To conduct a Spearman’s correlation, we can execute the following command:

cor.test(gradesData$gcse, gradesData$stats, alternative = "greater", method =
"spearman")

Note that I have specified a one-tailed test by including alternative = “greater”. This is

because earlier I predicted that better grades in GCSE maths would correlate with better
degree grades for my statistics course. This hypothesis is for a positive directional
relationship and so alternative = “greater” should be specified.

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 17

Spearman's rank correlation rho

data: gradesData$gcse and gradesData$stats
S = 1418.034, p-value = 0.01121
alternative hypothesis: true rho is greater than 0
sample estimates:
 rho
0.4546021

The output shows the Spearman correlation on the variables stats and gcse. The output
shows the correlation coefficient between the two variables (.455) and the significance value
of this coefficient (.011). The significance value for this correlation coefficient is less than .05;
therefore, it can be concluded that there is a significant relationship between a student’s
grade in GCSE maths and their degree grade for their statistics course. The correlation itself
is positive: therefore, we can conclude that as GCSE grades improve, there is a
corresponding improvement in degree grades for statistics. As such, the hypothesis was
supported.

We could also look at Kendall’s correlation by simply changing method = “spearman” to
method = “kendall” in the previous code:

cor.test(gradesData$gcse, gradesData$stats, alternative = "greater", method =
"kendall")

Kendall's rank correlation tau

data: gradesData$gcse and gradesData$stats
z = 2.1794, p-value = 0.01465
alternative hypothesis: true tau is greater than 0
sample estimates:
 tau
0.3539614

The actual value of the correlation coefficient is less than Spearman’s correlation (it has

decreased from .455 to .354). Despite the difference in the correlation coefficients, we can
still interpret this result as being a highly significant positive relationship (because the
significance value of .015 is less than .05). However, Kendall’s value is a more accurate
gauge of what the correlation in the population would be. As with Pearson’s correlation, we
cannot assume that the GCSE grades caused the degree students to do better in their
statistics course.

We could report these results as follows:
 There was a positive relationship between a person’s statistics grade and their GCSE

maths grade, rs = .46, p < .05.
 There was a positive relationship between a person’s statistics grade and their GCSE

maths grade, τ = .35, p < .05. (Note that I’ve quoted Kendall’s tau here.)

